Sabtu, 13 Juni 2009


ilmu dasar seorang calon Drilling and Completion Engineer


Kalau anda seorang mechanical engineer, sebagian ilmu dasar itu sudah anda miliki untuk menjadi seorang Drilling & Completion Engineer, tinggal dipoles dengan ilmu dasar yang menyangkut Geology dan Petroleum Engineeringnya..

Secara singkat, ilmu dasar yang diperlukan oleh seorang "calon" drilling engineer adalah sbb:

1. Fisika Dasar: yang menyangkut ilmu gaya dan prinsip2 tekanan (U-Tube, Hidrostatic Pressures, Pressure Gradient, dsb) --> semua ini sudah anda pelajari sejak di SMP.

2. Geometry: untuk mengukur dimensi ruang dari berbagai bentuk struktur (silinder, kotak, dan berbagai bentuk lainnya) --> ini seharusnya tidak jadi masalah buat seorang mechanical engineer.

3. Analisa dimensi --> karena berhubungan dengan unit / satuan yang nantinya akan menghasilkan "conversion factor". Apalagi di dunia drilling ada yang memakai satuan Amerika (American units, seperti: inch, feet, gallon, lbs, bbls, deg F, psi, dsb) dan ada yang memakai Satuan International (SI), seperti SG, meter, Pascal, deg C

4. Mekanika Dasar:

a. Mekanika Gaya: ini biasanya berhubungan dengan menghitung Rig Capacity, Stress, Tension, Collapse, Burst, Buckling (misalnya untuk casing design, drill string design, dsb)

b. Mekanika Fluida: ini berhubungan dengan tekanan hidrostatik, flow regimes (laminar, turbulent, termasuk untuk annular velocity, jet velocity, dsb), hidrolika (termasuk drilling hydraulics, hydraulic horse power, dsb), buoyancy principles, dsb

c. Mekanika Batuan (Rock Mechanics): ini berhubungan dengan borehole stability (agar lubang tidak runtuh), Mohr Circle basic principle, dsb

5. Kimia Dasar: ini berhubungan dengan type drilling fluid (Lumpur) yang akan dipakai, yang paling tepat untuk type sumur di daerah tertentu, yang menghasilkan lubang yang paling bagus (stabil) dengan minimum formation damage namun tetap dalam range biaya yang dapat dipertanggungawabkan. Disini perlu pemahaman tentang pH, sifat2 reaktif shale (lempung) terhadap air dan bagaimana mengatasinya dengan jenis dan sifat2 (property) Lumpur yang tepat, ada juga daerah di kedalaman tertentu yang mengandung kadar garam tinggi (salt dome) agar kita tau bagaimana mengatasinya, dsb. Seorang mud engineer harus menguasai prinsip2 dasar ini.

6. Electro Dasar / Radioactivity: pemahaman mengenai resistivity / conductivity dsb yang dikombinasikan dengan prinsip2 dasar radioactivity (misalnya yang berhubungan dengan Gamma Ray, Neutron Density, dsb). Hal ini untuk mengukur density batuan, porositynya, ada / tidaknya hydrocarbon dalam interval batuan tertentu, dsb. Seorang electric logging engineer harus menguasai prinsip2 dasar ini..

7. Tentu selain ilmu2 di atas, perlu pemahaman yang baik juga tentang prinsip2 dasar Petroleum Engineering dan Geology.

jenis batuan


Batuan-batuan di bumi (Jenis dan terbentuknya)

 Bagian luar bumi tertutupi oleh daratan dan lautan dimana bagian dari lautan lebih besar daripada bagian daratan. Akan tetapi karena daratan adalah bagian dari kulit bumi yang dapat kita amati langsung dengan dekat maka banyak hal-hal yang dapat pula kita ketahui dengan cepat dan jelas. Salah satu diantaranya adalah kenyataan bahwa daratan tersusun oleh beberapa jenis batuan yang berbeda satu sama lain. Dari jenisnya batuan-batuan tersebut dapat digolongkan menjadi 3 jenis golongan. Mereka adalah : batuan beku (igneous rocks), batuan sediment (sedimentary rocks), dan batuan metamorfosa/malihan (metamorphic rocks). Batuan-batuan tersebut berbeda-beda materi penyusunnya dan berbeda pula proses terbentuknya.

Batuan beku atau sering disebut igneous rocks adalah batuan yang terbentuk dari satu atau beberapa mineral dan terbentuk akibat pembekuan dari magma. Berdasarkan teksturnya batuan beku ini bisa dibedakan lagi menjadi batuan beku plutonik dan vulkanik. Perbedaan antara keduanya bisa dilihat dari besar mineral penyusun batuannya. Batuan beku plutonik umumnya terbentuk dari pembekuan magma yang relatif lebih lambat sehingga mineral-mineral penyusunnya relatif besar. Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah). Sedangkan batuan beku vulkanik umumnya terbentuk dari pembekuan magma yang sangat cepat (misalnya akibat letusan gunung api) sehingga mineral penyusunnya lebih kecil. Contohnya adalah basalt, andesit (yang sering dijadikan pondasi rumah), dan dacite 


Batuan sediment atau sering disebut sedimentary rocks adalah batuan yang terbentuk akibat proses pembatuan atau lithifikasi dari hasil proses pelapukan dan erosi yang kemudian tertransportasi dan seterusnya terendapkan. Batuan sediment ini bias digolongkan lagi menjadi beberapa bagian diantaranya batuan sediment klastik, batuan sediment kimia, dan batuan sediment organik. Batuan sediment klastik terbentuk melalui proses pengendapan dari material-material yang mengalami proses transportasi. Besar butir dari batuan sediment klastik bervariasi dari mulai ukuran lempung sampai ukuran bongkah. Biasanya batuan tersebut menjadi batuan penyimpan hidrokarbon (reservoir rocks) atau bisa juga menjadi batuan induk sebagai penghasil hidrokarbon (source rocks). Contohnya batu konglomerat, batu pasir dan batu lempung. Batuan sediment kimia terbentuk melalui proses presipitasi dari larutan. Biasanya batuan tersebut menjadi batuan pelindung (seal rocks) hidrokarbon dari migrasi. Contohnya anhidrit dan batu garam (salt). Batuan sediment organik terbentuk dari gabungan sisa-sisa makhluk hidup. Batuan ini biasanya menjadi batuan induk (source) atau batuan penyimpan (reservoir). Contohnya adalah batugamping terumbu.

Batuan metamorf atau batuan malihan adalah batuan yang terbentuk akibat proses perubahan temperature dan/atau tekanan dari batuan yang telah ada sebelumnya. Akibat bertambahnya temperature dan/atau tekanan, batuan sebelumnya akan berubah tektur dan strukturnya sehingga membentuk batuan baru dengan tekstur dan struktur yang baru pula. Contoh batuan tersebut adalah batu sabak atau slate yang merupakan perubahan batu lempung. Batu marmer yang merupakan perubahan dari batu gamping. Batu kuarsit yang merupakan perubahan dari batu pasir.Apabila semua batuan-batuan yang sebelumnya terpanaskan dan meleleh maka akan membentuk magma yang kemudian mengalami proses pendinginan kembali dan menjadi batuan-batuan baru lagi. 

Proses-proses tersebut berlangsung sepanjang waktu baik di masa lampau maupun masa yang akan datang. Kejadian alam dan proses geologi yang berlangsung sekarang inilah yang memberikan gambaran apa yang telah terjadi di masa lampau seperti diungkapkan oleh ahli geologi “JAMES HUTTON” dengan teorinya “THE PRESENT IS THE KEY TO THE PAST”

operasi migas


PENGETAHUAN DASAR OPERASI HULU MIGAS DAN ASPEK K3PL

1.INTRODUKSI
Minyak dan gas bumi (Migas) atau disebut juga hidrokarbon dapat berupa :

- Cairan misalnya, crude oil, solar, bensin dsb.
- Gas misalnya , gas alam
- Padatan misalnya asphal

1.1. Keunggulan Migas
1. Mempunyai nilai kalor tinggi
2. Dapat menghasilkan berbagai macam bahan bakar , misalnya:bensin,solar,kerosin, aftur, afgas, bbg, dsb.
3. Dapat menghasilkan berbagai macam minyak pelumas.
4. Sebagai bahan baku industri petrokimia.
5. Yang bersifat padat (aspal) dapat untuk pengerasan jalan.

1.2. Kegiatan Operasi Hulu.
- Eksplorasi
- Pengeboran
- Eksploitasi / Produksi.

2. EKSPLORASI MIGAS
Eksplorasi migas adalah kegiatan untuk mendapatkan perangkap migas atau cadangan baru minyak dan gas bumi.
Pekerjaan eksplorasi melalui beberapa tahap;
1. Pendahuluan.
2. Pemetaan geologi (surface mapping).
3. Pemetaan bawah permukaan (sub surface mapping).
4. Pengeboran.

2.1 Tahap Pendahuluan.
a. Pemotretan dari udara
Dari hasil pemotretan dapat diperoleh data,
~ interpretasi geologi
~ bentuk batuan permukaan
~ macam batuan.
b. Topografi
Untuk mendapatkan penjelasan keadaan permukaan tanah.
(Peta topografi)

Aspek K3PL :
1). Personal preventive equipment (PPE)
2). Perintisan jalan.
3). Penebangan semak
4). Gangguan binatang buas, nyamuk, lintah
5). Keadaan alam.

2.2 Pemetaan Geologi (Surface Mapping).
Pemetaan geologi (surface mapping) adalah memetakan bagian-bagian yang tersingkap di permukaan bumi, dan menentukan keadaan struktur dari lapisan. Petugas harus menyusuri tebing, sungai , hutan, rawa dan sebagainya.

Aspek K3PL
1). Personal Preventive Equipment (PPE).
2). Binatang buas.
3). Gigitan binatang kecil.
4). Keadaan alam.

2.3 Pemetaan Bawah Permukaan (Subsurface Mapping).
Pemetaan bawah permukaan , adalah membuat peta geologi dengan metode geofisik ( misalnya ;gravimetris, dan seismik).
1). Gravimetris.
Penyelidikan dengan metode gravimetris ini berdasarkan variasi dari gaya gravitasi batuan , yaitu makin kedalam (dekat pusat bumi) massa suatu batuan akan bertambah besar.Dengan mengetahui variasi gravitasi diatas permukaan maka dapat diperkirakan struktur batuan dibawah permukaan bumi.
2). Seismik.
Pemetaan ini berdasarkan gelombang getaran, yakni pengukuran getaran gempa bumi buatan yang bersumber dari bahan peledak atau detonator.
Getaran ditangkap oleh geophone dan direkam oleh alat perekam (recorder).

Aspek K3PL :
v Handling detonator (handak)
v Efek getaran
v PPE

2.4 Pengeboran Eksplorasi.
1). Pengeboran stratigrafi.
Bertujuan untuk menentukan stratigrafi lapisan. Coring
dilakuakan terus menerus.
2). Pengeboran struktur.
Pengeboran struktur in bertujuan untuk menentukan batas batas
lapisan dengan pasti.
3). Pengeboran wildcat
Pengeboran ini bertujuan mencari minyak.
4). Pengeboran semi eksplorasi.
Bertujuan untuk menyelidiki lapisan minyak.
5). Pengeboran untuk mengetahui cadangan minyak.
Untuk mengetahui cadangan atau sisa cadangan hidrokarbon.

Aspek K3PL adalah semburan liar (blowout) dan hal ini akan dibicarakan
pada Bab. Pengeboran.

3. PENGEBORAN (DRILLING).
Pegeboran adalah membuat lubang sumur dengan tujuan untuk eksplorasi, eksploitasi /produksi atau pengembangan.
Metode pengeboran yang populer dengan menggunakan sistem bor putar (rotary drilling) , dimana rangkaian pipa bor (drilling string) mulai dari bawah terdiri : pahat (bit), pipa pemberat (drill collar), pipa bor (drill pipe), dan kelly.

3.1 Sistem Sirkulasi .
Lumpur bor yang salah satu fungsinya mengangkat serbuk bor (cutting) dari dasar sumur kepermukaanselalu dilakukan sirkulasi dengan menggunakan pompa lumpur.Kalau tidak serbuk bor akan menumpuk didasar lubang dan dapat menyebabkan rangkaian pipa bor terjepit.
Fungsi lumpur bor.
1. Mengangkat serbuk bor dari dasar lubang ke permukaan.
2. Menahan/melawan tekanan formasi.
3. Mendinginkan/melumasi pahat.
4. Mengurangi berat string.
5. Menahan serbuk bor sewaktu menyambung pipa bor.
6. Membentuk mud cake.
7. Sebagai tenaga penggerak pada turbo atau dyna drill.
Mud additives.
Adalah bahan-bahan yang ditambahkan kedalam lumpur bor , untuk mendapatkan sifat-sifat lumpur yang dikehendaki. Misalnya; mengatur SG, mengatur viscositas, mengurangi/mencegah hilang lumpur dsb.
Dengan demikian lumpur pemboran mengandung bahan kimia.

3.2 Pipa Selubung (Casing) dan Penyemenan.
Setelah kedalam lubang bor mencapai kedalaman tertentu, maka lubang sumur dipasang pipa selubung (casing) dan disemen.
Fungsi pipa selubung dan semen.
1. Memperkuat dinding lubang.
2. Mencegah kontaminasi terhadap air tawar.
3. Mengisolir lapisan produktif dengan lapisan lain.
4. Mencegah semburan liar dari lapisan lain melalui anulus.
5. Semen mencegah tekanan dari luar terhadap casing dan mencegah korosi.

3.3 Sistem Peralatan Angkat (Hoisting System)
Sistem peralatan angkat (hoisting system) adalah peralatan yang digunakan untuk mengangkat dan menurunkan rangkaian pipa bor .
Sistem alat angkat terdiri ; menara, draw work dan mesin penggerak, wire rope, crown block, dan traveling block. ( Gbr. 3.3 ).

3.4 Logging dan Perforasi.
Logging adalah satu pekerjaan dengan menggunakan alat log untuk mengetahui jenis dan sifat batuan serta kedalamannya. Dengan demikian dapat menentukan letak kedalaman lapisan yang mengandung minyak dengan tepat.
Perforasi adalah pekerjaan pelubangan casing agar minyak dan gas dapat mengalir dari formasi batuan ke lubang sumur.

Aspek K3PL
1. Gunakan PPE.
2. Semburan liar (blowout)
a. Tanda-tanda kick.
b. Pencegahan semburan liar.
c. Teknik pencegahan.
d. Peralatan semburan liar (blowout preventer).
3. Bahan peledak perforator
4. Dampak lingkungan bila terjadi blow out.
a. Korban jiwa/cacat
b. Kerusakan peralatan.
c. Rugi waktu
d. Terbakarnya hidrokarbon.
e. Rusaknya lingkungan akibat kebakaran.
f. Kemungkinan adanya gas beracun
g. Dsb.
5. Prosedur kerja yang salah.
6. Pengelolaan lumpur bor , limbah lumpur dan serbuk bor ( Per. Men. ESDM No.045 Th.2006)

4. TEKNIK PRODUKSI.
Cara untuk mengangkat minyak dari dasar sumur ke permukaanada beberapa metode sebagai berikut:
1. Sembur Alam (Natural flow).
2. Pengangkatan buatan (Artificial Lift)

4.1 Sembur Alam (Natural Flow).
Sumur dengan metode sembur alam ini minyak menyembur dengan sendirinya disebabkan tekanan reservoir masih cukup tinggi .
Sedangkan tekanan sebagai tenaga dorong pada reservoir berasal dari : air, gas, tekanan batuan,maupun gas yang larut dalam minyak.

4.2 Pengangkatan Buatan.
Sumur dengan metode pengangkatan buatan ini (artificial lift method) minyak dapat mengalir ke permukaan karena ada tenaga tambahan dari luar untuk mengangkatnya.
Sumur dengan metode pengangkatan buatan contohnya;
a. Sumur sembur buatan (Gas lift)
b. Pompa angguk (Sucker rod pump).
c. Pompa sentrifugal (Electrical submersible pump).

4.2.1 Sumur Sembur Buatan (Gas Lift).
Sumur dengan metode sembur buatan (gas lift) ini , untuk mengangkat minyak dari dasar sumur ke permukaan dengan bantuan gas injeksi. Gas diinjeksikan dari permukaan melalui anulus , kemudian masuk ke tubing melalui katup yang dipasang pada tubing. Gas kemudian bercampur dengan minyak sehingga SG nya menjadi kecil (ringan) dan minyak dapat menyembur ke permukaan.

4.2.2 Pompa Angguk (Sucker rod pump).
Sumur dengan pompa angguk ini untuk mengangkat minyak dari dasar sumur ke permukaan dengan memasang pompa plunger yang dipasang di dalam sumur. Plunger dihubungkan dengan batang isap (sucker rod) ke permukaan yang digerakkan oleh pumping unit yang menggunakan tenaga penggerak dari motor .
Peralatan dibawah permukaan (subsurface equipment) terdiri;
Ø Pompa
Ø Sucker rod string
Ø Pipa Tubing
Peralatan diatas permukaan atau Pumping unit terdiri ;
Ø Motor penggerak (prime mover)
Ø Gear reducer , untuk menurunkan putaran tinggi ke putaran rendah sesuai spm (stroke per menit) pompa.
Ø Beam pumping , sebagai pengubah gerakan putar menjadi gerak naik turun.
Ø Well head

4.2.3 Pompa Sentrifugal (Electrical Submersible Pump) 
Untuk mengangkat minyak dari dasar sumur ke permukaan menggunakan pompa sentrifugal yang digerakkan oleh motor listrik dalam sumur.
Peralatan dibawah permukaan terdiri ;
Ø Motor listrik
Ø Kabel listrik
Ø Protector
Ø Intake
Ø Pompa sentrifugal
Ø Pipa Tubing
Peralatan dipermukaan terdiri;
Ø Well head
Ø Kabel listrik
Ø Junction box
Ø Switch board
Ø Transformator

Aspek K3PL:
1. Kebocoran minyak atu gas yang menyebabkan polusi atau kebakaran , tau keracunan gas.
2. Proteksi terhadap; tekanan tinggi, listrik tegangan tinggi, dan mesin yang bergerak.

5.PENGOLAHAN MINYAK DAN GAS DILAPANGAN
5.1 Fluida Sumur. 
Fluida yang keluar dari sumur minyak pada umumnya terdiri ;
1. Minyak (crude oil)
2. Air
3. Gas
4. Padatan
Tujuan pengolahan , untuk memisahkan komponen-komponen untuk mendapatkan;
· Minyak kering
· Gas kering
· Air bebas polusi.
5.2 Separator Minyak Dan Gas
Separator minyak dan gas adalah salah satu dari komponen proses yang fungsinya untuk memisahkan minyak dengan gas (separator dua fasa), atau memisahkan gas, minyak, dan air (separator tiga fasa).
5.3 Heater Treater
Adalah suatu komponen proses yang fungsinya untuk memisahkan minyak dengan air yang berupa emulsi dengan cara pemanasan.
5.4 Kompresor.
Kompresor adalah suatu komponen proses yang berfungsi untuk menaikkan tekanan gas
5.5 Gas Scubber
Gas scrubber adalah suatu komponen proses yang fungsinya untuk memisahkan cairan yang mesih terikut gas
5.6 Gas Dehydrator
Gas dehydrator adalah suatu komponen proses yang berfungsi untuk menyerap air yang terdapat pada gas.

Aspek K3PL;
1. Setiap saat dapat terjadi musibah (kebakaran , kecelakaan dsb), akibat tekanan, temperatur, bahan mudah terbakar, bahan/gas beracun dan lain-lain.
2. PPE
3. Safety devices (Level control, pressure control, temperature control, flow control, PSV, PSE, gas detector dsb.)
4. Flare, vent.
5. Pembuangan air limbah.

                                               Penyemenan (Cementing)



Penyemenan sumur digolongkan menjadi dua bagian : 

Pertama, primary cementing, yaitu penyemenan pada saat sumur sedang dibuat. Sebelum penyemenan ini dilakukan, casing dipasang dulu sepanjang lubang sumur. Campuran semen (semen + air + aditif) dipompakan ke dalam annulus (ruang/celah antara dua tubular yang berbeda ukuran, bisa casing dengan lubang sumur, bisa casing dengan casing). Fungsi utamanya untuk pengisolasian berbagai macam lapisan formasi sepanjang sumur agar tidak saling berkomunikasi. Fungsi lainnya menahan beban aksial casing dengan casing berikutnya, menyokong casing dan menyokong lubang sumur (borehole). 

Kedua, remedial cementing, yaitu penyemenan pada saat sumurnya sudah jadi. Tujuannya bermacam-macam, bisa untuk mereparasi primary cementing yang kurang sempurna, bisa untuk menutup berbagai macam lubang di dinding sumur yang tidak dikehendaki (misalnya lubang perforasi yang akan disumbat, kebocoran di casing, dsb.), dapat juga untuk menyumbat lubang sumur seluruhnya. 

Semen yang digunakan adalah semen jenis Portland biasa. Dengan mencampurkannya dengan air, jadilah bubur semen (cement slurry). Ditambah dengan berbagai macam aditif, properti semen dapat divariasikan dan dikontrol sesuai yang dikehendaki. 

Semen, air dan bahan aditif dicampur di permukaan dengan memakai peralatan khusus. Sesudah menjadi bubur semen, lalu dipompakan ke dalam sumur melewati casing. Kemudian bubur semen ini didorong dengan cara memompakan fluida lainnya, seringnya lumpur atau air, terus sampai ke dasar sumur, keluar dari ujung casing masuk lewat annulus untuk naik kembali ke permukaan. Diharapkan seluruh atau sebagian dari annulus ini akan terisi oleh bubur semen. Setelah beberapa waktu dan semen sudah mengeras, pemboran bagian sumur yang lebih dalam dapat dilanjutkan. 

Untuk apa directional drilling dilakukan ? Secara konvensional sumur dibor berbentuk lurus mendekati arah vertikal. Directional drilling (pemboran berarah) adalah pemboran sumur dimana lubang sumur tidak lurus vertikal, melainkan terarah untuk mencapai target yang diinginkan. 

Tujuannya dapat bermacam-macam : 
Sidetracking : jika ada rintangan di depan lubang sumur yang akan dibor, maka lubang sumur dapat dielakkan atau dibelokan untuk menghindari rintangan tersebut. 
Jikalau reservoir yang diinginkan terletak tepat di bawah suatu daerah yang tidak mungkin dilakukan pemboran, misalnya kota, pemukiman penduduk, suaka alam atau suatu tempat yang lingkungannya sangat sensitif. Sumur dapat mulai digali dari tempat lain dan diarahkan menuju reservoir yang bersangkutan. 
Untuk menghindari salt-dome (formasi garam yang secara kontinyu terus bergerak) yang dapat merusak lubang sumur. Sering hidrokarbon ditemui dibawah atau di sekitar salt-dome. Pemboran berarah dilakukan untuk dapat mencapai reservoir tersebut dan menghindari salt-dome. 
Untuk menghindari fault (patahan geologis). 
Untuk membuat cabang beberapa sumur dari satu lubung sumur saja di permukaan. 
Untuk mengakses reservoir yang terletak di bawah laut tetapi rignya terletak didarat sehingga dapat lebih murah. 
Umumnya di offshore, beberapa sumur dapat dibor dari satu platform yang sama sehingga lebih mudah, cepat dan lebih murah. 
Untuk relief well ke sumur yang sedang tak terkontrol (blow-out). 
Untuk membuat sumur horizontal dengan tujuan menaikkan produksi hidrokarbon. 
Extended reach : sumur yg mempunyai bagian horizontal yang panjangnya lebih dari 5000m. 
Sumur multilateral : satu lubang sumur di permukaan tetapi mempunyai beberapa cabang secara lateral di bawah, untuk dapat mengakses beberapa formasi hidrokarbon yang terpisah. 

Pemboran berarah dapat dikerjakan dengan peralatan membor konvensional, dimana pipa bor diputar dari permukaan untuk memutar mata bor di bawah. Kelemahannya, sudut yang dapat dibentuk sangat terbatas. Pemboran berarah sekarang lebih umum dilakukan dengan memakai motor berpenggerak lumpur (mud motor) yang akan memutar mata bor dan dipasang di ujung pipa pemboran. Seluruh pipa pemboran dari permukaan tidak perlu diputar, pipa pemboran lebih dapat “dilengkungkan” sehingga lubang sumur dapat lebih fleksibel untuk diarahkan.

Jumat, 12 Juni 2009


BIT PEMBORAN


Kegunaan Pahat Bor

Untuk mendapatkan kedalaman yang diharapkan diperlukan suatu alat yang letaknya di ujung rangkaian pipa pemboran dinamakan mata bor atau bit. Mata bor atau bit adalah alat yang terpasang di ujung paling bawah dari rangkaian pipa yang langsung berhadapan dengan formasi atau batuan yang di bor. Adanya putaran dan beban yang diperoleh dari rangkaian pipa bor diatasnya, akan menyebabkan mata bor itu menghancurkan batuan yang terletak dibawah sehingga akan menembus semakin dalam bebatuan tersebut. Lumpur yang disirkulasikan akan keluar melalui mata bor dan menyemprotkan langsung kebatuan yang sedang dihancurkan di dasar lubang bor. Semprotan ini akan ikut membantu menghancurkan batuan-batuan itu. Batuan yang disemprot oleh Lumpur tadi akan lebih mudah lagi dihancurkan oleh mata bor, sehingga dengan demikian akan diperoleh laju pemboran yang lebih cepat.

Jenis Pahat
Ada tiga macam mata bor jika dilihat dari jenis batuan yang dibor, yaitu :
Mata bor untuk batuan lunak , bentuk gigi panjang dan langsing.
Mata bor untuk batuan sedang, bentuk gigi agak pendek dan tebal.
Mata bor untuk batuan keras, bentuk gigi pendek dan tebal.

Berdasarkan structure pemotong (cutter) dan bantalannya dapat diklasifikasikan sebagai berikut :
Wing Bit
Dipergunakan untuk dilapisan permukaan, umumnya dipakai pada lubang-lubang besar untuk stove pipe yang dalamnya berkisar atara 0 – 30m. Ukuran pahat tersebut biasanya 36 inchi.

Roller Cone
Pahat roller cone biasa dipakai untuk lapisan lunak sampai lapisan keras.

Diamond
Pahat Diamond merupakan sejenis bahan yang mempunyai kekerasan yang sama dengan intan (intan industri) dipakai apabila pahat biasa sudah tidak dapat menembus formasi, umumnya untuk lapisan-lapisan yang keras.

Dari ketiga macam jenis pahat tersebut yang terbanyak dipergunakan adalah jenis Roller Cone.

Pahat roller cone yang biasa dipakai di buat oleh beberapa pabrik yaitu ;
Hughes
Reed
Varel
Smith
Security

Roller Cone dibagi juga dengan klasifikasi dan kekerasan pahat itu sendiri yaitu dengan no. code misalnya untuk yang soft IADC code : 111, 114 ( International Assosiation Drilling Code ).Kekerasan pahat disesuaikan dengan formasi yang akan dilaluinya misalnya : soft to medium, medium to hard, untuk mempermudah mengenal apakah pahat itu untuk formasi lunak, sedang dank eras maka yang perlu diperhatikan adalah bentuk gigi pahat tersebut.

Pemilihan Pahat
Didalam pemilihan pahat adalah, Pahat yang dipergunakan untuk mengebor formasi tertentu, tergantung pada kekerasan batuan dari formasi tersebut. Pahat yang dipakai untuk mengebor batuan lunak tidak dapat berfungsi dengan baik bila dipakai untuk mengebor batuan sedang atau batuan keras.Pengetahuan tentang pemilihan pahat untuk mengoptimasikan pemboran tidak seluruhnya teoritas, tetapi dalam banyak hal pemilihan ini tergantung pada pengalaman-pengalaman yang didapat dalam pemboran didaerah yang sudah diketahui atau dikenal.
Hasil pemilihan pahat ini sangat penting karena menyangkut :
Biaya dari pahat.
Rig cost
Round trip / cabut masuk.
Dari ketiga biaya ini barulah dapat menghitung operation cost ( biaya operasi).

Dalam pemboran harus dicatat kemajuan pemboran serta memeriksa serbuk bor yang keluar untuk mengetahui kekerasan dari formasi yang akan ditembus. Semua data yang dicatat pada saat pemboran berlangsung sangat penting karena menyangkut waktu dan biaya, juga sebagai data bila dilakukan pemboran ulang ditempat yang sama. Pemilihan pahat yang tidak sesuai akan memakan waktu yang lama sehingga pahat harus dicabut dan diganti. Untuk daerah-daerah yang baru biasa disebut daerah Eksplorasi ketelitian pemilihan pahat sangat diperlukan dan perlu dilakukan study pemakaian pahat yaitu dengan meneliti kemungkinan bergantinya lapisan formasi dari laju pemboran maupun dari serbuk-serbuk bor (cutting) yang keluar terbawa Lumpur bor.
Dari hasil ini perlu melihat data-data dari pahat itu sendiri berupa beban yang diizinkan untuk pahat tersebut, kemudian berapa putaran pipa atau string yang diperbolehkan. Semua petunjuk mengenai pahat yang akan dipakai haruslah sesuai bila kita ingin mencapai laju pemboran yang kita inginkan.

Beban pada pahat

Beban yang diberikan terhadap pahat merupakan factor yang sangat penting, yaitu dimana saat pahat mulai bekerja ( bor ) maka beban pahat mulai dinaikan perlahan-lahan dengan melihat laju dengan bertambahnya beban yang diberikan pada pahat. Dari beban pahat kemudian perlu mengetahui kecepatan putar ( RPM ).

Kecepatan Putar
Laju pemboran akan meningkat dengan kenaikan kecepatan putar secara exponential.
Dari pemakaian pahat bor ( drilling bit ) yang perlu diperhatikan bahwa setiap barang mempunyai umur tertentu demikian juga pahat bor ( bit life ).

Keausan pada gigi pahat dan bantalan pahat.
Disamping umur dari pahat juga tertentu, maka keausan gigi dan bantalan pahat perlu diperhatikan. Contoh yang perlu diperhatikan pada saat operasi pemboran berlangsung, dengan menurunnya laju pemboran maupun sering adanya torque ( torsi ) pada saat mengebor.
Dalam pemakaian pahat untuk mengebor batuan maka gigi pahat dan bantalan akan menjadi aus, laju keausan dari gigi pahat dan bantalan tersebut tergantung kepada type batuan, beban pada pahat ( WOB ), kecepatan putar ( RPM ) dan sifat-sifat Lumpur pemboran.
Untuk mengoptimasikan pemboran maka pahat tersebut harus dicabut dan diganti sesuai dengan kekerasan dari lapisan yang akan ditembus. Melanjutkan pemboran dengan gigi-gigi pahat yang telah aus akan meninggikan biaya pemboran, disamping kemungkinan terlepasnya gigi pahat / cone sangat besar.
Hal ini sangat penting diperhatikan agar tidak terjadi pekerjaan tambahan diluar program kerja.

Contoh :
Bila pahat terlepas (cone) dan tertinggal didalam lubang bor maka untuk melanjutkan pemboran yang tertinggal didalam lubang harus diambil(dibersihkan) terlebih dahulu, bila tidak pemboran tidak dapat dilanjutkan karena akan menghambat laju pemboran dan kemungkinan-kemungkinan lain yang dapat meninggikan Cost akan terjadi. Untuk melanjutkan pemboran dengan benda-benda yang tertinggal di lubang bor mungkin dapat dihancurkan, tetapi memerlukan waktu yang lama bila dibandingkan dengan mengambil (fishing job)kemudian dilanjutkan bor.
Kemungkian lain adalah masih adanya kendala karena lubang tidak bersih dari hasil serbuk bor yang tidak hancur. Dari pekerjaan-pekerjaan tambahan ini, kita kehilangan waktu yang mengakibatkan naiknya biaya operasi.


Umur Pahat
Perlu diingatkan bahwa ketahanan suatu barang juga tidak terlepas dari umur barang itu sendiri, demikian juga dengan pahat bor (Drilling bit). Drilling bit pun kita kenal mempunyai umur pahat( bit life ) yaitu : jumlah jam pengoperasian pahat hingga ia tidak dapat melanjutkan pemboran dengan cost/foot yang rendah . Umur dari pahat tersebut tergantung dari beberapa faktor :
Beban pada pahat ( WOB )
Kecepatan putar ( RPM )
Karateristik dari batuan
Hydrolika
Optimum cost/foot

Dengan memakai WOB dan RPM yang lebih besar, pahat akan menjadi aus lebih cepat ; umurnya akan lebih pendek. Demikianpun dengan bit hydraulic yang tidak cukup akan mempertinggi laju keausan pahat , yang selanjutnya akan lebih memperpendek umur pahat.

Rumus yang dipakai untuk mengoptimasikan umur pahat dalam bentuk biaya per foot adalah :

C / F = ( Cb + Ct + Cd + Cc + Cr ) / bit footage

Dimana :
C / F = Cost per foot
Cb = Harga pahat
Ct = Biaya tripping
Cd = Down time cost
Cc = Connection Cost
Cr = Rotating Cost

Untuk menentukan kapan pahat akan diganti harus dipakai angka C/F yang terendah .

Salah satu penyebab dari laju pemboran disamping penentuan pahat yang sesuai juga tergantung dari nozzle yang kita pakai pada pahat.

Pemakaian nozzle

Dari pemakaian nozzle yang tepat ( dihitung ) dapat menaikkan laju pemboran sebesar 15 – 40 %, juga tidak terlepas dari bit hydraulic yang dihasilkan oleh lumpur melalui nozzle tersebut .
Dalam pelaksanaan pemboran sebelum pahat dimasukkan kedalam lubang bor, yang perlu diperhatikan adalah :
Catat ukuran pahat
No. Serie / IADC Code
Periksa kondisi pahat
Ukuran nozzle dan kelengkapannya
Penyambungan pada pipa bor harus memakai bit breaker dengan torque yang disarankan .


KERUSAKAN PAHAT

Bit life tidak selamanya menjadi patokan untuk tripping ( ganti pahat ) tetapi hanya sebagai Guide ( Penuntun ) dari pahat itu. Kapan kita harus mengganti pahat tidak perlu menunggu sampai habis umur pahat itu, tetapi tergantung dari kecepatan mengebor ( ROP ).Ini sangat perlu diperhatikan karena semuanya menyangkut biaya. Dalam pengalaman kadang - kadang pahat yang seharusnya bisa mengebor diatas 50 jam ( bit life ) ternyata baru 6 jam tidak ada kemajuan, ini harus segera diganti, kemudian perlu diteliti apa penyebabnya.
Penyebabnya yang sering terjadi adalah :
1. Rusaknya pahat ; terutama
a. Cone
b. Gigi
c. Bearing
2. Tidak cocoknya type pahat dengan formasi yang ditembus
3. Kejatuhan barang dalam lubang bor sehingga menghambat laju pemboran.

Dari kerusakan - kerusakan pada pahat bisa terjadi pada gigi pahat, cone & bearing.

Contoh kerusakan adalah :
Cone pecah, Gigi pahat pecah/patah, Balled Up, Cone Cracked (pecah),Cone Dragged (Salah satu cone atau lebih)tidak bisa berputar, Erosion, Lost Cone, Lost Nozzle, Lost Teeth, Wash Out Bit.

Ukuran - ukuran pahat yang biasa dipakai :
Pahat 36” untuk pipa selubung 30”
Pahat 26” untuk pipa selubung 20”
Pahat 17. 1/2" untuk pahat selubung 13. 3/8”
Pahat 12. 1/4” untuk pipa selubung 9. 5/8”
Pahat 8. 1/2” untuk selubung 7”
Pahat 6” untuk pipa selubung 4.1/2”

Rabu, 10 Juni 2009

sifat fisik batuan reservoir


Sifat Fisik Batuan Reservoir Migas


a. Porositas
Porositas didefinisikan sebagai perbandingan antara volume ruang pori- pori terhadap volume batuan total (bulk volume). Besar kecilnya porositas suatu batuan akan menentukan kapasitas penyimpanan fluida reservoir. Secara matematis porositas dapat dinyatakan sebagai :
? = (Vb-Vs)/Vb = Vp
Dimana :
Vb : volume batuan total (bulk volume)
Vs : volumepadatan batuan total (volume grain)
Vp : volume ruang pori- pori total batuan

b. Saturasi Fluida
saturasi fluida batuan didefinisikan sebagai perbandingan antara volume pori- pori batuan yang ditempati oleh suatu fluida tertentu dengan volume pori- pori total pada suatu batuan berporil. Pada batuan reservoir minyak umumnya terdapat lebih dari satu macam fluida, kemungkinan terdapat air, minyak, dan gas yang tersebar ke seluruh bagian reservoir. Secara matematis, besarnya saturasi untuk masing- masing fluida dituliskan dalam persamaan berikut :
S=(volume pori- poriyang diisi oleh fluida tertentu)/ volumepori- pori total
Jika pori- pori batuandiisi oleh gas-minyak-air maka berlaku hubungan :
Sg + So + Sw = 1

c. Permeabilitas
permeabilitas didefinisikan sebagai suatu bilangan yang menunjukkan kemampuan dari suatu batuan untuk mengalirkan fluida. Definisi kwantitatif permeabilitas pertama- tama oleh percobaan Darcy (1856) seperti berikut ini :
k (darcy) = (Q. µ.L) / (A.(P1-P2)

dimana :
k = darcy atau milidarcy (D atau mD)
Q= cm3/sec
µ= centipoise
L= cm
A= sq.cm
P1-P2= atm

d. Derajat Kebasahan / Wettabilitas
Wetabilitas adalah kemampuan batuan untuk dibasahi oleh fasa fluida, jika diberikan dua fluida yangtak saling campur (immisible).pada bidang antar muka cairan dengan benda padat terjadi gaya tarik- menarik antara cairan dengan benda padat (gaya adhesi),yang merupakan faktor dari tegangan permukaan antara fluida dan batuan.
Pada umumnya reservoir bersifat water wet, sehingga air cenderung untuk melekat pada permukaan batuan sedangkan minyak akan terletak diantara fasa air. Jadi minyak tidak mempunyai gaya tarik- menarik dengan batuan dan akanlebih mudah mengalir.

e. Tekanan Kapiler
Tekanan kapiler (Pc) didefinisikan sebagai perbedaan tekanan yang ada antara permukaan dua fluida yang tidak tercampur (cairan- cairan atau cairan- gas) sebagai akibat dari pertemuan permukaan yang memisahkan kedua fluida tersebut. Besarnya tekanan kapiler dipengaruhi oleh tegangan permukaan, sudut kontak antara minyak-air-zat padat danjari- jari kelengkungan pori.

f. Kompresibilitas
Pada formasi batuankedalam tertentu terdapat dua gaya yang bekerja padanya, yaitugaya akibat beban batuan diatasnya (overburden) dan gaya yangtimbul akibat adanya fluida yang terkandung dalam pori- pori batuan tersebut. Pada keadaan statik,kedua gaya berada di dalam keadaan setimbang. Bila tekanan reservoir berkurang akibat pengosongan fluida, maka kesetimbangan gaya ini terganggu, akibatnya terjadi penyesuaian dalam bentuk volume pori- pori.

Jumat, 05 Juni 2009

jejak sumur minyak pertama


Jejak Sumur Minyak Pertama di Indonesia

Sebuah pertempuran hebat berlangsung di laut lepas antara Semenanjung Melayu dan pantai Aceh sekitar abad enam belas. Saling berhadapan, antara pejuang pejuang Aceh dan armada Portugis pimpinan Laksamana Alfonso D’Albuquerque yang berencana mendarat ke Aceh dalam rangka ekspansi pencarian rempah-rempah. Bola-bola api berterbangan dari kapal-kapal milik pejuang Aceh. Api pun membakar dua kapal Portugis, dan tenggelam!

Bola-bola api yang menjadi senjata utama rakyat Aceh dalam peperangan di laut tersebut, adalah gumpalan kain yang telah dicelupkan ke dalam cairan minyak bumi. Setelah dinyalakan, lantas dilentingkan ke arah kapal Portugis itu.

Sebuah catatan lain menyebutkan, pada tahun 972 telah datang utusan kerajaan Sriwijaya ke negeri Cina. Utusan Sriwijaya itu membawa beragam cinderamata sebagai tanda persahabatan, termasuk juga membawa berguci-guci minyak bumi yang khusus dihadiahkan untuk Kaisar Cina.

Oleh orang Cina dimanfaatkan sebagai obat penyakit kulit dan rematik. Begitu juga dengan nenek moyang kita, di samping memakai cairan itu sebagai bahan bakar lampu penerang, pun memakainya untuk obat terhadap gigitan serangga, penyakit kulit dan beragam penyakit lain.

Kisah heroik pejuang Aceh dan muhibah utusan Sriwijaya tadi, merupakan kisah tentang awal mula diketahui adanya minyak bumi di Indonesia. Tetapi sejarah perminyakan di Indonesia, tidak terjadi Aceh atau Sumatera Selatan tempat Kerajaan Sriwijaya berada. Justru Sumatera Utara yang beruntung mencatat sejarah sebagai daerah tempat sumur minyak pertama ditemukan.

Persisnya sumur minyak pertama itu berada di Desa Telaga Said, Kecamatan Sei Lepan, Kabupaten Langkat, sekitar 110 kilometer barat laut Medan, ibukota Sumatera Utara.

Desa Telaga Said sendiri merupakan sebuah desa kecil yang, berada dalam areal perkebunan kelapa sawit. Pekerjaan utama masyarakatnya adalah buruh perkebunan. Dengan tingkat penghasilan yang rendah, maka dapat dikatakan taraf penghidupan ekonomi di desa ini rendah.

Tugu 100 Tahun

Perjalanan menuju lokasi sumur minyak pertama di Desa Telaga Said, cukup melelahkan. Dari Medan butuh waktu dari Medan menuju Pangkalan Brandan, salah satu kecamatan utama Kabupaten Langkat. Dari Brandan ini, jarak perjalanan sekitar 20 kilometer lagi menuju Desa Telaga Said, melewati perkebunan sawit dan karet.

Memasuki jalanan desa, kesunyian mulai terasa. Kendaraan jarang berlalu-lalang. Lantas pada sebuah pertigaan, sebuah tugu akan terlihat agak mencolok di sebelah kiri jalan. Tugu itu adalah peringatan 100 tahun perminyakan Indonesia.

Tugu itu sendiri berbentuk semi silinder dengan tinggi sekitar dua meter, yang dibalut dengan marmer hitam. Pada bagian tengah tugu, di bawah logo Pertamina, terdapat tulisan, “Telaga Tunggal 1885 -1985”. Prasasti yang terdapat di sebelahnya bertuliskan, Tugu Peringatan 100 Th Industri Perminyakan Indonesia. Diresmikan Tgl 4 Oktober 1985, oleh Ir Suyetno Patmosukismo, Pimpinan Umum Daerah Pertamina Sumatera Bagian Utara.

Pada satu sisi, tugu minyak ini menjadi pertanda sumur minyak pertama sudah semakin dekat. Tetapi pada sisi lain, juga menandakan, akan segera berakhirnya jalan beraspal hotmix. Sekitar 20 menit berikutnya, memasuki tikungan yang ke kiri, jalan yang akan dilalui sudah tidak beraspal lagi karena telah tergerus. Debu beterbangan saat mobil melintas. Hujan sehari sebelumnya membentuk kolam-kolam kecil di tengah jalan.

Lokasi sumur minyak pertama itu sendiri dapat ditemui setelah berjalan kaki sekitar 200 meter dari lokasi tempat mobil dapat diparkirkan. Berjalan agak menanjak sedikit, selanjutnya akan didapati sebuah plang yang menjelaskan tentang riwayat singkat sumur pertama tersebut.

“Di sini telah dibor sumur penghasil pertama di Indonesia. Nama Sumur Telaga Tunggal. Ditajak 15 Juni 1885. Kedalaman 121 meter. Hasil minyak 180 barrel perhari dari lima lapisan batu pasir dengan formasi baong. Lapangan ditinggalkan tahun 1934.”

Dekat plang itu akan ditemukan ujung poipa besi bekas aliran minyak. Pipa itu terselebung semak belukar, pertanda areal ini memang tidak dirawat sebagaimana mestinya. Sebuah gundukan tanah terlihat di dekatnya. Gundukan itu diyakini sebagai kuburan Said, yakni petugas pengeboran yang hilang sewaktu melakukan pekerjaannya membangun sumur minyak pertama. Kuburan itu dikeramatkan, dan beberapa warga mengaku pernah melihat rambut Said di sekitar sumur itu.

Andil Aeliko Janszoon Zijlker

Penemu sumur minyak pertama ini adalah seorang warga Belanda bernama Aeliko Janszoon Zijlker. Dia ahli perkebunan tembakau pada Deli Tobacco Maatschappij, perusahaan perkebunan yang ada di daerah ini pada masa itu. Penemuan itu sendiri merupakan buah perjalanan waktu dan ketabahan yang mengagumkan. Prosesnya dimulai setelah Zijlker mengetahui adanya kemungkinan kandungan minyak di daerah tersebut.

Lantas dia menghubungi sejumlah rekannya di Belanda untuk mengumpulkan dana guna melakukan eksplorasi minyak di Langkat. Begitu dana diperoleh, perizinan pun diurus. Persetujuan konsesi dari Sultan Langkat masa itu, Sultan Musa, diperoleh pada 8 Agustus 1883.

Tak membuang waktu lebih lama, eksplorasi pertama pun segera dilakukan Zijlker. Tetapi bukan di tempat sumur minyak pertama itu, melainkan di daerah yang belakangan disebut sebagai sumur Telaga Tiga. Memang dari proses pengeboran di Telaga Tiga diperoleh minyak mentah (crude oil), tetapi hasilnya tidak begitu menggembirakan. Hingga tanggal 17 November 1884, setelah pengeboran berlangsung sekitar dua bulan, minyak yang diperoleh hanya sekitar 200 liter. Semburan gas yang cukup tinggi dari sumur Telaga Tiga, membuyarkan harapan untuk mendapatkan minyak yang banyak.

Namun Zijlker dan kawan-kawan tidak berhenti sampai di situ. Mereka kemudian mengalihkan kegiatannya ke daerah konsesinya yang berada di sebelah timur. Untungnya memang konsesi yang diberikan Sultan Musa cukup luas, mencakup wilayah pesisir Sei Lepan, Bukit Sentang sampai ke Bukit Tinggi, Pangkalan Brandan, sehingga bisa mencari lebih banyak titik pengeboran.

Pilihan kedua jatuh ke Desa Telaga Said. Di lokasi kedua ini, pengeboran mengalami sedikit kesulitan karena struktur tanah lebih keras jika dibandingkan dengan struktur tanah di Telaga Tiga. Usaha memupus rintangan struktur tanah yang keras itu, akhirnya membuahkan hasil. Saat pengeboran mencapai kedalaman 22 meter, berhasil diperoleh minyak sebanyak 1.710 liter dalam waktu 48 jam kerja. Saat mata bor menyentuh kedalaman 31 meter, minyak yang dihasilkan sudah mencapai 86.402 liter! Jumlah itu terus bertambah hingga pada 15 Juni 1885, ketika pengeboran mencapai kedalaman 121 meter, tiba-tiba muncul semburan kuat gas dari dalam berikut mintak mentah dan material lainnya dari perut bumi. Sumur itu kemudian dinamakan Telaga Tunggal I.

Penemuan sumur minyak pertama di Nusantara ini berjarak sekitar 26 tahun dari penemuan sumur minyak komersial pertama di dunia pada 27 Agustus 1859 di Titusville, negara bagian Pennsylvania, yang diprakarsai Edwin L. Drake dan William Smith dari Seneca Oil Company.

Bukan yang Pertama

Aeliko Janszoon Zijlker memang bukan orang pertama yang melakukan pengeboran minyak di Indonesia. Bahkan pada saat yang hampir bersamaan dengan Zijlker, seorang Belanda lainnya Kolonel Drake, juga tengah melakukan pencarian ladang minyak di Pulau Jawa, namun Zijlker mendahuluinya. Jauh sebelum itu, pada tahun 1871, seorang Belanda lainnya, Jan Reerink menjadi orang pertama yang membor bumi Nusantara untuk mencari emas hitam. kendatipun usahanya tidak berhasil. Reerink mencoba peruntungannya di Cibodas Tangat, Kecamatan Majalengka, Jawa Barat. Karena kurang pengalaman dan peralatan yang minim pemboran hanya berhasil mencapai kedalaman 33 meter. Tahun 1872 pemboran dihentikan karena banyaknya longsoran tanah.

Pemboran di lokasi kedua yang jaraknya sekitar semeter dari lubang pemboran pertama, berhasil menemukan minyak pada kedalaman mencapai 22 meter. Namun sepanjang tahun 1872 itu, mimnyak yang berhasil ditemukan tak lebih dari 6.176 kilogram saja. Usaha itu dinyatakan gagal total pada 16 Desember 1974, setelah berkali-kali gagal.

Namun kegagalan itu akhirnya dituntaskan Zijlker. Semburan minyak dari Sumur Telaga I jadi momentum pertama keberhasilan penambangan minyak di Indonesia. Nama Aeliko Janszoon Zijlker pun tercatat dalam Sejarah Pertambangan dan Industri Perminyakan Indonesia, sebagai penemu sumur minyak pertama dalam sejarah perminyakan di Indonesia yang telah berberusia 119 tahun hingga saat ini.

Telaga Tunggal I itu sendiri akhirnya akhirnya berhenti operasi pada tahun 1934 setelah habis minyaknya disedot pemerintah Belanda yang mengelola ladang minyak ini melalui perusahaan Bataafsche Petroleum Matschappij (BPM).
Andil Aeliko Janszoon Zijlker

Penemu sumur minyak pertama ini adalah seorang warga Belanda bernama Aeliko Janszoon Zijlker. Dia ahli perkebunan tembakau pada Deli Tobacco Maatschappij, perusahaan perkebunan yang ada di daerah ini pada masa itu. Penemuan itu sendiri merupakan buah perjalanan waktu dan ketabahan yang mengagumkan. Prosesnya dimulai setelah Zijlker mengetahui adanya kemungkinan kandungan minyak di daerah tersebut.

Lantas dia menghubungi sejumlah rekannya di Belanda untuk mengumpulkan dana guna melakukan eksplorasi minyak di Langkat. Begitu dana diperoleh, perizinan pun diurus. Persetujuan konsesi dari Sultan Langkat masa itu, Sultan Musa, diperoleh pada 8 Agustus 1883.

Tak membuang waktu lebih lama, eksplorasi pertama pun segera dilakukan Zijlker. Tetapi bukan di tempat sumur minyak pertama itu, melainkan di daerah yang belakangan disebut sebagai sumur Telaga Tiga. Memang dari proses pengeboran di Telaga Tiga diperoleh minyak mentah (crude oil), tetapi hasilnya tidak begitu menggembirakan. Hingga tanggal 17 November 1884, setelah pengeboran berlangsung sekitar dua bulan, minyak yang diperoleh hanya sekitar 200 liter. Semburan gas yang cukup tinggi dari sumur Telaga Tiga, membuyarkan harapan untuk mendapatkan minyak yang banyak.

Namun Zijlker dan kawan-kawan tidak berhenti sampai di situ. Mereka kemudian mengalihkan kegiatannya ke daerah konsesinya yang berada di sebelah timur. Untungnya memang konsesi yang diberikan Sultan Musa cukup luas, mencakup wilayah pesisir Sei Lepan, Bukit Sentang sampai ke Bukit Tinggi, Pangkalan Brandan, sehingga bisa mencari lebih banyak titik pengeboran.

Pilihan kedua jatuh ke Desa Telaga Said. Di lokasi kedua ini, pengeboran mengalami sedikit kesulitan karena struktur tanah lebih keras jika dibandingkan dengan struktur tanah di Telaga Tiga. Usaha memupus rintangan struktur tanah yang keras itu, akhirnya membuahkan hasil. Saat pengeboran mencapai kedalaman 22 meter, berhasil diperoleh minyak sebanyak 1.710 liter dalam waktu 48 jam kerja. Saat mata bor menyentuh kedalaman 31 meter, minyak yang dihasilkan sudah mencapai 86.402 liter! Jumlah itu terus bertambah hingga pada 15 Juni 1885, ketika pengeboran mencapai kedalaman 121 meter, tiba-tiba muncul semburan kuat gas dari dalam berikut mintak mentah dan material lainnya dari perut bumi. Sumur itu kemudian dinamakan Telaga Tunggal I.

Penemuan sumur minyak pertama di Nusantara ini berjarak sekitar 26 tahun dari penemuan sumur minyak komersial pertama di dunia pada 27 Agustus 1859 di Titusville, negara bagian Pennsylvania, yang diprakarsai Edwin L. Drake dan William Smith dari Seneca Oil Company.

Bukan yang Pertama

Aeliko Janszoon Zijlker memang bukan orang pertama yang melakukan pengeboran minyak di Indonesia. Bahkan pada saat yang hampir bersamaan dengan Zijlker, seorang Belanda lainnya Kolonel Drake, juga tengah melakukan pencarian ladang minyak di Pulau Jawa, namun Zijlker mendahuluinya. Jauh sebelum itu, pada tahun 1871, seorang Belanda lainnya, Jan Reerink menjadi orang pertama yang membor bumi Nusantara untuk mencari emas hitam. kendatipun usahanya tidak berhasil. Reerink mencoba peruntungannya di Cibodas Tangat, Kecamatan Majalengka, Jawa Barat. Karena kurang pengalaman dan peralatan yang minim pemboran hanya berhasil mencapai kedalaman 33 meter. Tahun 1872 pemboran dihentikan karena banyaknya longsoran tanah.

Pemboran di lokasi kedua yang jaraknya sekitar semeter dari lubang pemboran pertama, berhasil menemukan minyak pada kedalaman mencapai 22 meter. Namun sepanjang tahun 1872 itu, mimnyak yang berhasil ditemukan tak lebih dari 6.176 kilogram saja. Usaha itu dinyatakan gagal total pada 16 Desember 1974, setelah berkali-kali gagal.

Namun kegagalan itu akhirnya dituntaskan Zijlker. Semburan minyak dari Sumur Telaga I jadi momentum pertama keberhasilan penambangan minyak di Indonesia. Nama Aeliko Janszoon Zijlker pun tercatat dalam Sejarah Pertambangan dan Industri Perminyakan Indonesia, sebagai penemu sumur minyak pertama dalam sejarah perminyakan di Indonesia yang telah berberusia 119 tahun hingga saat ini.

Telaga Tunggal I itu sendiri akhirnya akhirnya berhenti operasi pada tahun 1934 setelah habis minyaknya disedot pemerintah Belanda yang mengelola ladang minyak ini melalui perusahaan Bataafsche Petroleum Matschappij (BPM).